Files
pig-house-controller/app/lora/lora_mesh_uart_passthrough_manager.py

207 lines
9.4 KiB
Python
Raw Normal View History

2025-10-09 17:01:52 +08:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
LoRa模块的具体实现 (UART Passthrough for LoRa Mesh)
负责与LoRa模块进行底层通信并向上层提供标准化的数据包收发接口
这个实现针对的是通过UART进行透传的LoRa Mesh模块
"""
2025-10-13 14:35:20 +08:00
from ..logs.logger import log
2025-10-09 20:10:23 +08:00
from machine import UART
import time
2025-10-09 17:01:52 +08:00
2025-10-13 14:35:20 +08:00
class LoRaMeshUartPassthroughManager:
2025-10-09 17:01:52 +08:00
"""
2025-10-09 20:10:23 +08:00
通过UART与LoRa Mesh模块通信的处理器实现 (ED模式)
实现了自动分片与重组逻辑
2025-10-09 17:01:52 +08:00
"""
def __init__(self, lora_config: dict):
"""
初始化LoRa处理器
Args:
lora_config (dict): 来自全局配置文件的LoRa配置字典
"""
2025-10-09 20:10:23 +08:00
log("LoRaMeshUartPassthroughManager: 初始化...")
2025-10-09 17:01:52 +08:00
2025-10-09 20:10:23 +08:00
# --- 配置注入 ---
2025-10-09 17:01:52 +08:00
self.master_address = lora_config.get('master_address')
self.uart_id = lora_config.get('uart_id')
self.baudrate = lora_config.get('baudrate')
self.pins = lora_config.get('pins')
2025-10-09 20:10:23 +08:00
self.max_chunk_size = lora_config.get('max_chunk_size')
self.lora_mesh_mode = b'\xed'
# TODO 目前这个配置没用, 完全按ED处理的
if lora_config.get('lora_mesh_mode') == 'EC':
self.lora_mesh_mode = b'\xec'
2025-10-09 17:01:52 +08:00
2025-10-09 20:10:23 +08:00
# --- 硬件初始化 ---
self.uart = UART(self.uart_id, self.baudrate, tx=self.pins['tx'], rx=self.pins['rx'])
2025-10-09 17:01:52 +08:00
2025-10-09 20:10:23 +08:00
# --- 内部状态变量 ---
self._rx_buffer = bytearray() # UART接收缓冲区
self._reassembly_cache = {} # 分片重组缓冲区 { chunk_index: chunk_data }
self._expected_chunks = 0 # 当前会话期望的总分片数
2025-10-09 17:01:52 +08:00
2025-10-13 16:11:55 +08:00
log(f"LoRaMeshUartPassthroughManager: 配置加载完成. UART ID: {self.uart_id}, Baudrate: {self.baudrate}, 针脚: {self.pins}")
2025-10-09 17:01:52 +08:00
2025-10-09 20:10:23 +08:00
def send_packet(self, payload: bytes) -> bool:
2025-10-09 17:01:52 +08:00
"""
2025-10-09 20:10:23 +08:00
实现发送一个数据包自动处理分片
2025-10-09 17:01:52 +08:00
Args:
2025-10-09 20:10:23 +08:00
payload (bytes): 需要发送的完整业务数据
2025-10-09 17:01:52 +08:00
Returns:
2025-10-09 20:10:23 +08:00
bool: True表示所有分片都已成功提交发送False表示失败
"""
max_chunk_size = self.max_chunk_size
if not payload:
total_chunks = 1
else:
total_chunks = (len(payload) + max_chunk_size - 1) // max_chunk_size
try:
for i in range(total_chunks):
chunk_index = i
start = i * max_chunk_size
end = start + max_chunk_size
chunk_data = payload[start:end]
# --- 组装物理包 ---
header = b'\xed'
dest_addr_bytes = self.master_address.to_bytes(2, 'big')
total_chunks_bytes = total_chunks.to_bytes(1, 'big')
current_chunk_bytes = chunk_index.to_bytes(1, 'big')
# 计算后续长度(总包数和当前包序号是自定义包头, 各占一位, 标准包头算在长度内)
length_val = 2 + len(chunk_data)
length_bytes = length_val.to_bytes(1, 'big')
# 拼接成最终的数据包
packet_to_send = header + length_bytes + dest_addr_bytes + total_chunks_bytes + current_chunk_bytes + chunk_data
self.uart.write(packet_to_send)
log(f"LoRa: 发送分片 {chunk_index + 1}/{total_chunks} 到地址 {self.master_address}")
# 让出CPU, 模块将缓存区的数据发出去本身也需要时间
time.sleep_ms(10)
return True
except Exception as e:
log(f"LoRa: 发送数据包失败: {e}")
return False
def receive_packet(self) -> bytes | None:
2025-10-09 17:01:52 +08:00
"""
2025-10-09 20:10:23 +08:00
实现非阻塞地检查解析并重组一个完整的数据包
"""
# 1. 从硬件读取数据到缓冲区
if self.uart.any():
2025-10-13 16:11:55 +08:00
new_data = self.uart.read()
if new_data:
log(f"LoRa: UART收到原始数据 (长度 {len(new_data)}): {new_data.hex()}")
self._rx_buffer.extend(new_data)
# 如果缓冲区为空,没有必要继续处理
if not self._rx_buffer:
return None
# 2. 只要缓冲区有数据就持续尝试从缓冲区解析包
while len(self._rx_buffer) > 0:
log(f"LoRa: --- 开始新一轮解析, 缓冲区 (长度 {len(self._rx_buffer)}): {self._rx_buffer.hex()} ---")
2025-10-09 20:10:23 +08:00
# 2.1 检查头部和长度字段是否存在
if len(self._rx_buffer) < 2:
2025-10-13 16:11:55 +08:00
log("LoRa: 缓冲区数据不足 (小于2字节),无法读取包头。等待更多数据...")
2025-10-09 20:10:23 +08:00
return None # 数据不足,无法读取长度
# 2.2 检查帧头是否正确
if self._rx_buffer[0] != 0xED:
log(f"LoRa: 接收到错误帧头: {hex(self._rx_buffer[0])}正在寻找下一个ED...")
next_ed = self._rx_buffer.find(b'\xed', 1)
if next_ed == -1:
2025-10-13 16:11:55 +08:00
log("LoRa: 缓冲区无有效帧头,已清空。")
2025-10-13 14:36:49 +08:00
self._rx_buffer[:] = b''
2025-10-13 16:11:55 +08:00
return None # 清空后没有数据了, 直接返回
2025-10-09 20:10:23 +08:00
else:
2025-10-13 16:11:55 +08:00
log(f"LoRa: 在位置 {next_ed} 找到下一个有效帧头,丢弃之前的数据。")
2025-10-09 20:10:23 +08:00
self._rx_buffer = self._rx_buffer[next_ed:]
2025-10-13 16:11:55 +08:00
continue # 继续循环,用新的缓冲区数据重新开始解析
2025-10-09 20:10:23 +08:00
# 2.3 检查包是否完整
payload_len = self._rx_buffer[1]
2025-10-13 16:20:50 +08:00
# 物理层在末尾又加了2字节的源地址所以完整包长需要+2。
total_packet_len = 1 + 1 + payload_len + 2
2025-10-13 16:11:55 +08:00
log(f"LoRa: 帧头正确(ED)。声明的后续包长(payload_len): {payload_len}。计算出的总包长: {total_packet_len}")
2025-10-09 20:10:23 +08:00
if len(self._rx_buffer) < total_packet_len:
2025-10-13 16:11:55 +08:00
log(f"LoRa: '半包'情况,需要 {total_packet_len} 字节,但缓冲区只有 {len(self._rx_buffer)} 字节。等待更多数据...")
2025-10-09 20:10:23 +08:00
return None # "半包"情况,等待更多数据
# 3. 提取和解析一个完整的物理包
2025-10-13 16:11:55 +08:00
log(f"LoRa: 发现完整物理包 (长度 {total_packet_len}),正在提取...")
2025-10-09 20:10:23 +08:00
packet = self._rx_buffer[:total_packet_len]
self._rx_buffer = self._rx_buffer[total_packet_len:]
2025-10-13 16:11:55 +08:00
log(f"LoRa: 提取的包: {packet.hex()}。剩余缓冲区 (长度 {len(self._rx_buffer)}): {self._rx_buffer.hex()}")
# --- 包结构解析 ---
# 根据代码 `chunk_data = packet[6:-2]` 推断,包结构为:
# 1 (帧头) + 1 (长度) + 2 (目标地址) + 1 (总分片) + 1 (当前分片) + N (数据) + 2 (源地址)
# 因此,一个合法的包至少需要 1+1+2+1+1+2 = 8个字节
if len(packet) < 8:
log(f"LoRa: 包长度 {len(packet)} 小于协议最小长度8, 判定为坏包,已丢弃。")
continue
2025-10-09 20:10:23 +08:00
addr = int.from_bytes(packet[2:4], 'big')
total_chunks = packet[4]
current_chunk = packet[5]
2025-10-10 15:00:01 +08:00
# 提取数据块排除末尾的2字节源地址
chunk_data = packet[6:-2]
2025-10-13 16:11:55 +08:00
source_addr = int.from_bytes(packet[-2:], 'big')
log(f"LoRa: 解析包: 源地址={source_addr}, 目标地址={addr}, 总分片={total_chunks}, 当前分片={current_chunk}, 数据块长度={len(chunk_data)}")
2025-10-09 20:10:23 +08:00
# 4. 重组逻辑
if total_chunks == 1:
2025-10-13 16:11:55 +08:00
log(f"LoRa: 收到单包消息,来自地址 {source_addr},长度 {len(chunk_data)}")
self._reassembly_cache.clear()
self._expected_chunks = 0
2025-10-09 20:10:23 +08:00
return chunk_data
2025-10-10 15:00:01 +08:00
# 对于多包消息,只有当收到第一个分片时才清空缓存并设置期望分片数
2025-10-09 20:10:23 +08:00
if current_chunk == 0:
2025-10-13 16:11:55 +08:00
log(f"LoRa: 开始接收新的多包会话 ({total_chunks}个分片) from {source_addr}...")
2025-10-09 20:10:23 +08:00
self._reassembly_cache.clear()
self._expected_chunks = total_chunks
2025-10-10 15:00:01 +08:00
elif not self._reassembly_cache and self._expected_chunks == 0:
# 如果不是第一个分片,但缓存是空的,说明错过了第一个分片,丢弃当前分片
2025-10-13 16:11:55 +08:00
log(f"LoRa: 收到非首个分片 {current_chunk} from {source_addr},但未检测到会话开始,已丢弃。")
2025-10-10 15:00:01 +08:00
continue
2025-10-09 20:10:23 +08:00
self._reassembly_cache[current_chunk] = chunk_data
2025-10-13 16:11:55 +08:00
log(f"LoRa: 收到分片 {current_chunk + 1}/{self._expected_chunks} from {source_addr},已缓存 {len(self._reassembly_cache)}")
2025-10-09 20:10:23 +08:00
if len(self._reassembly_cache) == self._expected_chunks:
2025-10-13 16:11:55 +08:00
log(f"LoRa: 所有分片已集齐 (from {source_addr}),正在重组...")
2025-10-09 20:10:23 +08:00
full_payload = bytearray()
for i in range(self._expected_chunks):
if i not in self._reassembly_cache:
log(f"LoRa: 重组失败!缺少分片 {i}")
self._reassembly_cache.clear()
2025-10-13 16:11:55 +08:00
self._expected_chunks = 0
2025-10-09 20:10:23 +08:00
return None
full_payload.extend(self._reassembly_cache[i])
log(f"LoRa: 重组完成,总长度 {len(full_payload)}")
self._reassembly_cache.clear()
2025-10-13 16:11:55 +08:00
self._expected_chunks = 0
2025-10-09 20:10:23 +08:00
return bytes(full_payload)
2025-10-13 16:11:55 +08:00
# while 循环结束,意味着缓冲区被处理完毕但没有返回一个完整的包
return None